Age, morbidity, or something else?

A residual approach using microdata to measure the impact of technological progress on health care expenditure

Mauro Laudicella, DaCHE, University of Southern Denmark (SDU)

Joint work with:
- Paolo Li Donni, University of Palermo
- Kim Rose Olsen, DaCHE
- Dorte Gyrd-Hansen, DaCHE

June 2021

Funded by the EU’s Horizon 2020 research and innovation programme under MSCA grant No 832513
Objectives

1. To measure the increment of Health Care Expenditure (HCE) that is driven by Technological Progress

2. To decompose such an increment into the part that is due to the effect of Delaying Time to Death (TTD) and the part that is due to the effect of Intensity of Resource use

- **Why TTD?** Individuals surviving longer thanks to new technology and medical practice may contribute longer to the demand

- **Why Intensity?** The basket of health services becoming more expensive due to the cost of innovation
A Broad Definition of Tech Progress

• The term “Technological Progress” used here includes:

 • Tangible new Technologies
 • such as physical equipment, drugs and treatments
 AND

 • Intangible new “Know How”
 • such as change in Medical Practice, namely a change in the organization of existing services and utilization of existing equipment based on new knowledge and evidence
Motivations

- High-income countries are experiencing a rapid growth of HCE
 - **HCE growth** outpacing demographic growth and aging of the population
Main Hypothesis

- A large body of literature investigates the contribution of Aging of the population, increment in Morbidity and proximity to death (TTD) on HCE
 - Evidence on aging population and morbidity are at odds with evidence of “healthy aging”
 - Individuals living longer shifting forward a constant number of years with disability

- **Hypothesis** investigated here:
 - HCE growth is driven by the interaction between Age Morbidity and Tech Progress
 - **HCE expenditure grows** not just because people are older or sicker, but also because new and more expensive technologies are available to treat older and sicker people over time
Challenges

1. Lack of agreement on a specific definition of Tech Progress

2. Lack of appropriate indicators to measure it over time
 - Number of patents?
 - Expenditure in R&D?

 - Research traditionally led by **Macroeconomic studies** (Chernew and Newhouse, 2011)
 - Limitation 1: impact of tech depend on assumptions on *income elasticity* and health insurance markets
 - Limitation 2: no control for **Morbidity**
Methods 1
Measuring the impact of tech progress on HCE

- Combine **Residual Approach** with **Microdata**

- Repeated cross-sections of individuals experiencing an **Initial Health Shock** over a ten-year window

- Capture the impact of **unobservable Tech Progress** (and Medical Practice) to which they are exposed in the year of the health shock

- Controlling for differences in **Morbidity** and **Socioeconomic** status over time

Identification:
- Some degree of random assignment of individuals to their initial health shock over calendar years

- A rich set of individual control indicators to adjust for potential bias in such assignment
 - Population become sicker or healthier over time
Study Population and Data

• We study people in Denmark age 50+ having an initial health shock between 2005 and 2014
 • Total population of about 1 million people
 • People with an initial health shock in 2014 absorbed 23.5% of national HCE for secondary care

• A health shock is defined as an emergency admission to the hospital with at least one day length of stay

• Initial health shock: we excluded patients having a health shock in the past five years
 • This mitigate confounding effects from tech they were exposed to in the past

• We extract data on utilisation of hospital inpatient and outpatient care. Primary diagnosis and comorbidities; socioeconomic status including income, migrant, living alone.
Research questions:

1. What is the increment in the HCE per individual exposed to a health shock over an 8-year time-window?

2. What is the increment due to Age? Morbidity?

3. What is the residual increment that can be attributed to Tech progress?
<table>
<thead>
<tr>
<th></th>
<th>Health shock 2013-14 patients</th>
<th>mean</th>
<th>s.d.</th>
<th>Health shock 2005-6 patients</th>
<th>mean</th>
<th>s.d.</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>194,459</td>
<td>50.56%</td>
<td></td>
<td>188,275</td>
<td>51.90%</td>
<td></td>
<td>-1.34%</td>
</tr>
<tr>
<td>age</td>
<td>194,459</td>
<td>69.04%</td>
<td>11.22</td>
<td>188,275</td>
<td>68.63%</td>
<td>11.4322</td>
<td>0.41</td>
</tr>
<tr>
<td>total diagnoses</td>
<td>194,459</td>
<td>2.0385%</td>
<td>1.3995</td>
<td>188,275</td>
<td>1.945%</td>
<td>1.2338</td>
<td>0.0935</td>
</tr>
<tr>
<td>Charlson index</td>
<td>194,459</td>
<td>0.8578%</td>
<td>1.4515</td>
<td>188,275</td>
<td>0.8005%</td>
<td>1.3465</td>
<td>0.0573</td>
</tr>
<tr>
<td>AMI</td>
<td>194,459</td>
<td>4.60%</td>
<td></td>
<td>188,275</td>
<td>5.53%</td>
<td></td>
<td>-0.93%</td>
</tr>
<tr>
<td>congestive heart failure</td>
<td>194,459</td>
<td>3.73%</td>
<td></td>
<td>188,275</td>
<td>4.20%</td>
<td></td>
<td>-0.47%</td>
</tr>
<tr>
<td>peripheral vascular disease</td>
<td>194,459</td>
<td>2.99%</td>
<td></td>
<td>188,275</td>
<td>2.76%</td>
<td></td>
<td>0.23%</td>
</tr>
<tr>
<td>cerebrovascular disease</td>
<td>194,459</td>
<td>9.24%</td>
<td></td>
<td>188,275</td>
<td>10.06%</td>
<td></td>
<td>-0.82%</td>
</tr>
<tr>
<td>dementia</td>
<td>194,459</td>
<td>1.96%</td>
<td></td>
<td>188,275</td>
<td>2.12%</td>
<td></td>
<td>-0.16%</td>
</tr>
<tr>
<td>chronic obstructive pulmonary dis.</td>
<td>194,459</td>
<td>6.80%</td>
<td></td>
<td>188,275</td>
<td>6.41%</td>
<td></td>
<td>0.39%</td>
</tr>
<tr>
<td>rheumatoid disease</td>
<td>194,459</td>
<td>1.97%</td>
<td></td>
<td>188,275</td>
<td>1.86%</td>
<td></td>
<td>0.11%</td>
</tr>
<tr>
<td>peptic ulcer</td>
<td>194,459</td>
<td>1.36%</td>
<td></td>
<td>188,275</td>
<td>2.04%</td>
<td></td>
<td>-0.68%</td>
</tr>
<tr>
<td>liver disease (mild)</td>
<td>194,459</td>
<td>0.87%</td>
<td></td>
<td>188,275</td>
<td>0.83%</td>
<td></td>
<td>0.04%</td>
</tr>
<tr>
<td>liver disease (severe)</td>
<td>194,459</td>
<td>0.35%</td>
<td></td>
<td>188,275</td>
<td>0.31%</td>
<td></td>
<td>0.04%</td>
</tr>
<tr>
<td>diabetes</td>
<td>194,459</td>
<td>7.24%</td>
<td></td>
<td>188,275</td>
<td>6.45%</td>
<td></td>
<td>0.79%</td>
</tr>
<tr>
<td>diabetes complications</td>
<td>194,459</td>
<td>1.68%</td>
<td></td>
<td>188,275</td>
<td>1.67%</td>
<td></td>
<td>0.01%</td>
</tr>
<tr>
<td>renal disease</td>
<td>194,459</td>
<td>1.65%</td>
<td></td>
<td>188,275</td>
<td>1.09%</td>
<td></td>
<td>0.56%</td>
</tr>
<tr>
<td>cancer</td>
<td>194,459</td>
<td>11.95%</td>
<td></td>
<td>188,275</td>
<td>9.87%</td>
<td></td>
<td>2.08%</td>
</tr>
<tr>
<td>metastatic cancer</td>
<td>194,459</td>
<td>2.43%</td>
<td></td>
<td>188,275</td>
<td>2.13%</td>
<td></td>
<td>0.30%</td>
</tr>
<tr>
<td>living alone</td>
<td>194,459</td>
<td>41.65%</td>
<td></td>
<td>188,275</td>
<td>42.53%</td>
<td></td>
<td>-0.88%</td>
</tr>
<tr>
<td>migrant</td>
<td>194,459</td>
<td>5.51%</td>
<td></td>
<td>188,275</td>
<td>4.18%</td>
<td></td>
<td>1.33%</td>
</tr>
<tr>
<td>income (x1,000 Euros)</td>
<td>194,459</td>
<td>29.2736</td>
<td>38.3464</td>
<td>188,275</td>
<td>26.6662</td>
<td>38.4559</td>
<td>2.6074</td>
</tr>
</tbody>
</table>
Figure 1. HCE after an initial health shock in 2005-6 and 2013-14. Prices reported in Euros at 2017 level.
Econometric Model 1 – details

- Simple GLM model with gamma distribution and log-link function:

\[HCE_i \sim Gamma(u, v) \]

\[E(HCE_i | X_i) = \exp(t + \beta X_i) \]

- \(X_i \) captures individual health and sociodemographic characteristics

- \(t \) captures the impact of **unobservable tech progress** as a **Residual Increment (RI)** of HCE over time

- Variation in average HCE per patient!
Results - Objective 1
Measuring the impact of tech progress on HCE
• Increment in HCE is **16.90** Percentage Points

• Age accounts for **7%** of HCE increment
 \[(1 - 15.77/16.90 = 6.87; \text{Model 2})\]

• Morbidity and Age account for **40%** of HCE increment
 \[(1 - 10.19/16.90 = 39.70; \text{Model 3})\]

• Including Socioeconomic indicators does not make a difference
 \[(\text{Model 4 not displayed})\]

• **Residual increment of HCE that we can attribute to Tech Progress is 60%**

Table 2. Residual Increment in HCE in individuals with an initial health shock

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>shock 2005-6</td>
<td>baseline</td>
<td>baseline</td>
<td>baseline</td>
</tr>
<tr>
<td>shock 2007-8</td>
<td>0.9894***</td>
<td>0.9881***</td>
<td>0.9792***</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td>(0.0042)</td>
<td>(0.0038)</td>
</tr>
<tr>
<td>shock 2009-10</td>
<td>1.0700***</td>
<td>1.0648***</td>
<td>1.0307***</td>
</tr>
<tr>
<td></td>
<td>(0.0047)</td>
<td>(0.0047)</td>
<td>(0.0041)</td>
</tr>
<tr>
<td>shock 2011-12</td>
<td>1.1210***</td>
<td>1.1125***</td>
<td>1.0684***</td>
</tr>
<tr>
<td></td>
<td>(0.0050)</td>
<td>(0.0049)</td>
<td>(0.0043)</td>
</tr>
<tr>
<td>shock 2013-14</td>
<td>1.1690*</td>
<td>1.1577*</td>
<td>1.1019*</td>
</tr>
<tr>
<td></td>
<td>(0.0052)</td>
<td>(0.0051)</td>
<td>(0.0044)</td>
</tr>
<tr>
<td>female</td>
<td>0.8733***</td>
<td>0.9126***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.0025)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td>1.1274***</td>
<td>1.0849***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0017)</td>
<td>(0.0014)</td>
<td></td>
</tr>
<tr>
<td>age sq.</td>
<td>0.9991***</td>
<td>0.9994***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0000)</td>
<td>(0.0000)</td>
<td></td>
</tr>
<tr>
<td>total diagnoses</td>
<td></td>
<td>1.1190***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0012)</td>
<td></td>
</tr>
<tr>
<td>Charlson index</td>
<td></td>
<td>1.1769***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0136)</td>
<td></td>
</tr>
<tr>
<td>15 comorbidities indicators</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005 primary diagnosis indicators</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income, living alone, migrant</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCE one and two year before the shock</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>962,794</td>
<td>962,794</td>
<td>962,794</td>
</tr>
<tr>
<td>BIC</td>
<td>-12203624</td>
<td>-12221661</td>
<td>-12457898</td>
</tr>
</tbody>
</table>

Robust SE in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Methods 2
Decomposing the impact of tech progress

• Follow up individuals 3 years after their initial health shock

• Model two dimensions of time: **Calendar Year** when individuals experience the shock and **Elapsed Time** after the shock

 • **Calendar Year**: to capture the effect of Tech on HCE

 • **Elapsed Time**: to examine cost accumulation over time

• Elapsed time is chopped into **discrete time** periods! So, we model **person-periods observations**
Econometric Model 2 – details

• Cost accumulation of individual “i” over a number of discrete time periods \(j = 1, \ldots, K \) can be described as (Basu and Manning, 2010):

\[
\mu = \sum_{j=1}^{K} \Pr(V > a_{j-1}) \ast \{ \mu_{1j} \ast h(a_j) + \mu_{2j} \ast (1 - h(a_j)) \}
\]

• Where \(\mu \) is the expected cumulative HCE up to the time period \(j = 1, \ldots, K \);
• \(\Pr(V > a_j) \) is a survival function with \(V \) indicating the time to death
• \(h(a_j) \) is the hazard of death in the interval \((a_j, a_{j-1}] \) for individuals who survived until \(a_{j-1} \);
• \(\mu_{1j} \) is the expected cost for individuals who die in \((a_j, a_{j-1}] \)
• \(\mu_{2j} \) is the expected cost for those who don’t

• This model allows the rate of HCE accumulation to differ in individuals who die from individuals who do not in each period
 • This is a nice feature as they follow very different trajectories of HCE
• Hence, we can estimate the HCE accumulation function with a **three-part model**

Part-1 estimates the **predicted probability of survival** $\hat{S}_j(X)$ until the start of the period j and the hazard function for death during the period $\hat{h}_j(X)$ for all person-period observations
 • Logit model

Part-2 estimates **HCE** $\hat{\mu}_{1j}(X)$ in the person-periods in which individuals die
 • Two-part GLM

Part-3 estimates **HCE** $\hat{\mu}_{2j}(X)$ in the person-periods in which the individual survives
 • Two-part GLM
• Thus, the estimated HCE function for individual “i“ in the interval j is:

\[\hat{\mu}_j(X) = \tilde{S}_j(X) \times \left[\hat{h}_j(X) \times \hat{\mu}_{1j}(X) + (1 - \hat{h}_j(X)) \times \hat{\mu}_{2j}(X) \right] \]

and \[\hat{\mu}(X) = \sum_{j=1}^{K} \hat{\mu}_j(X) \]

• We identify the effect of Tech progress on HCE by differentiating this Eq. by the calendar year “t” when individuals experience the health shock

• Effect of Tech progress on HCE between 2014-2005 is measured as the difference in cost accumulation between an individual exposed to a health shock in 2014 (treated) and an individual exposed to the same shock in 2005 (counterfactual), after controlling for observable health and socioeconomic status
Marginal effect of tech progress on HCE:

\[
\frac{\Delta \mu}{\Delta t_c} = \sum_{j=1}^{K} \left\{ \frac{\Delta \hat{S}_j}{\Delta t_c} \left[\hat{h}_j \ast \hat{\mu}_{1j} + (1 - \hat{h}_j) \ast \hat{\mu}_{2j} \right] + \hat{S}_j \left[\frac{\Delta \hat{h}_j}{\Delta t_c} \ast (\hat{\mu}_{1j} - \hat{\mu}_{2j}) \right] \right\} + \\
\left\{ \hat{S}_j \left[\hat{h}_j \ast \frac{\Delta \hat{\mu}_{1j}}{\Delta t_c} + (1 - \hat{h}_j) \ast \frac{\Delta \hat{\mu}_{2j}}{\Delta t_c} \right] \right\}
\]

Tech effect on HCE due to delaying TTD

Tech effect on HCE due to increasing intensity of resource use per unit of time j
Results - Objective 2
Decomposition of Tech Progress impact into DTT Effect and Intensity Effect
Figure 2. Cumulative survival probability after a health shock in 2013-14 and 2005-6. Predictions from a logit model.
Figure 3. Residual increment of HCE in 2013-14 vs 2005-6 (baseline). Total increment (continuous line) and decomposition into delaying time to death effect (dotted line) and intensity effect (dashed line). Cumulative distribution over the time elapsed from initial health shock. ($Y = 1,000$ Euros)
Quick Recap

- This study measures the overall effect of Tech Progress on HCE under a residual approach (Econometric Model 1).

- **Decomposing** tech effect into **TTD channel** and **intensity channel** is allowed by the specific cost function adopted (Econometric Model 2).
 - This cost function has been adopted in other studies, e.g. Federspiel et al., HSR 2013; White et al., HSR 2019; Williams et al., JAMA 2019.

- The cost function provides a tool to apportion the contribution of **TTD channel** and **intensity channel consistently** and examine their impact over time **separately**.
 - The above holds for many other type of decomposition exercise – they are descriptive in nature and based on assumptions!
Discussion

- Our estimates of the impact of Tech Progress are consistent with Macroeconomic studies (Smith et al., 2009 HA; Peden and Freeland, 1998 HE; Newhouse, 1992 JEP; Willemé and Dumont, 2015 HE; Okunade and Murthy, 2002 JHE)

 - Evidence of tech impact range between 40% and 70%

- Using Microdata gives us an edge

 1. Control for morbidity
 2. No assumption on Income Elasticity influencing predictions of macroeconomic models
 3. Decomposing the impact that is channeled by survival and by intensity
Thanks for your attention!

Mauro Laudicella
mlaudicella@health.sdu.dk
@mlaudicella
https://portal.findresearcher.sdu.dk/en/persons/mlaudicella

Danish Centre for Health Economics – DaCHE
@DaCHE_SDU
dache.dk
References